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Abstract

Photobiont plurality refers to the presence of multiple photobionts within a single lichen thallus. This phenomenon was
described at the end of the last century but has received deeper attention in the last decade. The available literature on this
topic is limited and studies address only a few groups of lichens. Here, the most recent and important findings on photobiont
plurality reported to date are revisited. The most commonly reported photobionts coexisting in a lichen thallus are algae of
the genus Trebouxia, though other algae and cyanobacteria more or less phylogenetically related may also coexist together.
A thallus with multiple photobionts may be formed at the beginning by the association of hyphae with several photobionts
at once or by the acquisition of additional photobionts during life. The most important factors affecting the cooccurrence
of multiple photobionts in a single thallus are likely the specificity and selectivity of mycobionts and local environmental
conditions. Photobiont plurality has been investigated so far in about fifty species of lichen-forming fungi among the
approximately 20,000 mycobiont species described. Coexisting photobionts differ in responses to several environmental,
mostly stress conditions, suggesting that the presence of multiple photobionts in a thallus may provide an advantage for

colonizing new habitats and may be essential for survival in localities with harsh or frequently changing conditions.
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1 Introduction

Lichens represent one of the longest-known exam-
ples of symbiotic relationships. As early as 1869,
Simon Schwendener described this unique close asso-
ciation between a fungus and algae (green or blue-green;
Schwendener 1869). Later, these two main partners of
lichens became well-known as the mycobiont (Scott
1957) and photobiont (Hawksworth and Honegger 1994).
Although the fundamental concepts of how precisely lichens
are defined remained relatively unchanged for over 140 years
(Liicking et al. 2021; Sanders 2024), the perspective on
this symbiotic relationship has been evolving over the past
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decade. According to the most updated definition, lichens
are stable, self-supporting associations involving multiple
symbiotic partners (Liicking et al. 2021). One of the findings
that contributed to this idea was the discovery of the coexist-
ence of two or more photobionts within a single lichen thal-
lus, known as photobiont plurality (e.g. Casano et al. 2011;
Muggia et al. 2014; Dal Grande et al. 2018; Vancurova et al.
2020). Besides that, it was the discoveries of bacteria, yeasts,
and other groups of microorganisms in lichens (e.g. Uphof
1925; Wilkinson et al. 2015; Spribille et al. 2016; Muggia
and Grube 2018; Petrzik et al. 2019).

While recent discoveries have expanded our understand-
ing of lichens as complex symbiotic systems involving
multiple partners (Hawksworth and Grube 2020), the term
‘lichen’ is still widely used to describe the traditional sym-
biotic relationship between a fungal partner, the mycobiont
(Scott 1957) and photosynthetic microalgae or cyanobacte-
ria, the photobiont (Ahmadjian 1993; Hawksworth and Hon-
egger 1994; Sanders 2024). Despite the presence of diverse
microorganisms within the thalli, the mycobiont and pho-
tobiont are essential, serving as the foundational elements
that drive the formation and sustain the unique ecological
identity of lichens (Honegger 1993; Sanders 2024). The
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presented text, therefore, does not consider epiphytic algae
or cyanobacteria as photobionts or components of lichens
in general. Views on the nature of this close relationship
between both partners have varied among scientists. In the
first description of the dual nature of lichens, Schwendener
quite explicitly interpreted the fungus as a parasite upon the
algae (Schwendener 1872) and so did more than a hundred
years later Ahmadjian and Jacobs (1981). On the other hand,
De Bary (1879) considered this fungal-algal symbiotic rela-
tionship mutualistic. Some authors view the relationship as
a form of domestication, where the mycobiont (host) merely
cultivates its algae for nutrition sources (Liicking et al. 2009;
Leavitt et al. 2015; Dal Grande et al. 2018; Rolshausen et al.
2020; Sanders 2023 and references therein).

In recent years, several studies describing higher diversity
of photobionts (e.g. Casano et al. 2011; Park et al. 2015; Dal
Grande et al. 2018) and other symbiotic partners within a
single thallus have emerged. Here, we summarize the cur-
rent knowledge and various hypotheses regarding photobiont
plurality within lichen thalli, i.e. the occurrence of more than
one photobiont lineage within a single lichen thallus (Leavitt
et al. 2015; Dal Grande et al. 2018; Vancurova et al. 2020).
We focus mainly on the mechanisms of its formation, the
taxa involved (both photobionts and mycobionts), the fac-
tors influencing it, and the overall significance of photobiont
plurality for lichen symbioses. We also compile a review of
the methods used to study photobiont plurality, as they play
a crucial role in obtaining comprehensive insights that can
be comparable and complementary among studies.

2 The lichen photobionts and their
associations with the mycobionts

The term ‘photobiont’ refers to the photosynthetic symbiont
of a lichen, whose role is the production of organic mol-
ecules — polyols in the case of algae, glucose in the case
of cyanobacteria (e.g. Smith and Douglas 1987; Kranner
et al. 2022; Spribille et al. 2022). It thus typically refers
to most often unicellular (Sanders and Masumoto 2021)
or occasionally filamentous (e.g. Phycopeltis; Sanders and
Liicking 2002) green algae or cyanobacteria. The historical
term ‘phycobiont’ has also been used in the scientific litera-
ture (Scott 1957; Ahmadjian 1993); however, that currently
refers specifically to the green microalgae. Also, to distin-
guish between cyanobacterial and green algal photobionts,
the terms cyanobiont and chlorobiont are used, respectively
(Kosugi et al. 2014).

The significance of photobionts is broad. The acquired
organic substances not only serve as an energy source for
the mycobiont but perhaps also act as osmoregulators dur-
ing desiccation and rehydration of the thallus (Bewley and
Krochko 1982; Spribille et al. 2022) or as stimulants for
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the thallus growth (Wang et al. 2009). Both processes are
also influenced by the production of phytohormones (Pichler
et al. 2023). Photobionts further produce cyclic peptides,
which serve as attractants for the mycobiont before they
become symbiotic partners (MeeBen et al. 2013; Pichler
et al. 2023).

Several groups of algae and cyanobacteria form associa-
tions with fungi to create lichens. Most commonly, these are
green algae from the classes Trebouxiophyceae and Ulvo-
phyceae. Over 50 genera of photobionts (including green
algae and cyanobionts) are known to be involved in lichen
formation, most of which can be involved in symbiosis with
several different species of mycobionts (Muggia et al. 2018;
Sanders and Masumoto 2021; Jung et al. 2021; Vesel4 et al.
2024). Therefore, significantly more mycobionts participate
in lichen symbiosis than photobionts (e.g. Liicking et al.
2009; Dal Forno et al. 2021).

Scientific literature often deals with the terms ‘specific-
ity’ and ‘selectivity’; however, there is considerable vari-
ability in how these terms are defined and used across dif-
ferent studies (e.g., Beck et al. 2002). For the purposes of
this review, we understand ‘specificity’ as the number of
photobionts with which a mycobiont can engage in this
mutual relationship, i.e., the higher the specificity, the lower
the number of photobiont species with which a mycobiont
lichenizes (Leavitt et al. 2015). Similarly, we consider
‘selectivity’ as the frequency of a mycobiont’s interactions
with a particular photobiont (Leavitt et al. 2015). Based on
the degree of selectivity, mycobionts can be classified as
specialists, generalists, and those whose selectivity falls
between these two categories (Yahr et al. 2004). Generally,
species with both low selectivity and specificity are consid-
ered generalists, as they can colonise a greater variety of
habitats, having a higher chance of finding a suitable pho-
tobiont in a given area (Yahr et al. 2004; Blaha et al. 2006).
Species on the opposite end of the spectrum are considered
specialists whose photobionts and mycobionts are better
adapted to each other (Yahr et al. 2004).

A photobiont significantly influences the ecological
relations of the entire lichen (Rolshausen et al. 2020). Its
requirements for the type of associated mycobiont and
the environmental conditions in which they live can also
be broad or, on the contrary, very specific. For example,
representatives of the genera Trebouxia and Asterochloris
associate with hundreds of different fungal species, while
genera like Neocystis or Leptosira form symbioses with only
a few mycobiont species (Sanders and Masumoto 2021).
This often means that it is the photobiont that determines
the width of the ecological niche of a given lichen species
(Peksa and Skaloud 2011). Peksa and Skaloud (2011) dem-
onstrated that the occurrence of individual Asterochloris
lineages in studied lichens of the genera Lepraria and Ste-
reocaulon is primarily determined by ecology rather than the
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taxonomic affiliation of the mycobionts. In contrast, other
studies suggest that the presence of a photobiont in an eco-
system depends more on the genotype of the mycobiont than
on the prevailing conditions at a site due to its selectivity
(Piercey-Normore and DePriest 2001; Leavitt et al. 2015).

Another significant factor influencing the diversity of
photobionts is the mode of reproduction of a lichen and,
thus, the way of their spreading. Sexually reproducing
lichens possibly share different photobionts than species that
reproduce vegetatively (Peksa et al. 2022). These findings
support the existence of so-called ‘lichen guilds’. Lichens of
the same guild grow in the same area and often contain the
same photobionts in their thalli, sharing a so-called ‘pho-
tobiont pool’ (Rikkinen et al. 2002; Fedrowitz et al. 2011;
Duran-Nebreda and Valverde 2023). This phenomenon is
known as photobiont sharing (Liicking et al. 2009). Accord-
ing to Ohmura et al. (2019), photobiont sharing occurs more
frequently in sexually reproducing lichens. Onut-Brannstrom
et al. (2018) further argue that it can also transpire between
phylogenetically distant mycobiont lineages occurring in
similar ecological conditions.

Another mechanism of photobiont sharing can be the
so-called ‘photobiont stealing’, where one lichen actively
appropriates the photobiont of another lichen (Liicking et al.
2009). This probably occurs mainly in juvenile parasitic spe-
cies (Friedl 1987; Blaha et al. 2006). The occurrence of a
specific photobiont in a lichen is thus affected by several
different factors, which may vary in the extent of their influ-
ence among distinct groups of lichens (Peksa and Skaloud
2011; Leavitt et al. 2015).

The degree of specificity of a mycobiont may, to some
extent, be related to the type of the lichen’s reproduction.
In general, it can be assumed that lichens reproducing sexu-
ally via spores should have a lower specificity, as different
photobionts may be available at a new site compared to their
original locality. In contrast, both main components of veg-
etatively reproducing lichens spread together, addressing the
common problem of the unavailability of a compatible part-
ner at a new site; thus, a tighter association of the mycobiont
and the photobiont can be expected (Leavitt et al. 2015).
This hypothesis has been confirmed in only a few chloroli-
chens (Cao et al. 2015; Steinova et al. 2019) and cyanoli-
chens (Fedrowitz et al. 2011), whereas in other cases, this
trend has not been demonstrated (e.g. Leavitt et al. 2015).

In general, there are several ways in which the mycobiont
can acquire a compatible photobiont. The first possibility
is the association of germinating hyphae with free-living
photobionts or with photobionts from other lichens (Friedl
1987). The lichenized photobionts then gradually proliferate
within the thallus (Blaha et al. 2006; Mansournia et al. 2012;
Sanders 2014). To acquire additional photobionts into the
thallus during its growth, the lichen may form a so-called
prothallus (a layer of mycobiont hyphae without photobiont

cells), providing space for potential association with another
photobiont (Sanders and Liicking 2002).

The term ‘photobiont switching’ refers to the phenom-
enon where the mycobiont relinquishes one photobiont and
acquires another (Sanders and Masumoto 2021), thereby
potentially expanding its ecological niche and increas-
ing the size of its population (Ertz et al. 2018). This often
occurs based on specific environmental gradients (e.g. ele-
vation). For example, different photobiont species may be
associated with the same mycobiont in lowlands compared
to areas a few hundred meters higher. Between these two
areas lies a transition zone, where the ecological niches of
both photobiont species (green microalgae or cyanobacte-
ria) overlap, leading to a photobiont exchange within the
lichen (Rolshausen et al. 2020, 2022). In some lichens, the
genetic relatedness of the switched photobionts may not
even be important. For instance, Ertz et al. (2018) dem-
onstrated a photobiont switch between a Trebouxia and a
Trentepohlioid photobiont from the family Ulvophyceae in
the lichen Lecanographa amylacea. The exchange of phylo-
genetically distant photobionts often occurs in sterile lichens
(Blaha et al. 2006; Ohmura et al. 2019). Photobiont switch-
ing takes place not only due to environmental changes but
also among different generations (Sanders and Masumoto
2021), contributing to the longevity of mycobionts (Wornik
and Grube 2010). It often occurs in the same lichens where
photobiont plurality has been described (e.g. Muggia et al.
2014; Dal Grande et al. 2018; Ohmura et al. 2019; Moya
et al. 2024).

3 Photobiont plurality

The term ‘photobiont plurality’ refers to the occurrence
of more than one photobiont within a single lichen thal-
lus (Leavitt et al. 2015; Dal Grande et al. 2018; Vancurova
et al. 2020). This phenomenon has been more thoroughly
described with the development of molecular methods and
has been studied in more detail in the last 15 years (e.g. Del
Campo et al. 2010, 2013; Casano et al. 2011; Moya et al.
2017). A general assumption for the occurrence of multiple
photobionts is the low specificity of the mycobiont because
such mycobiont species can generally associate with a larger
number of photosynthetic partners (Leavitt et al. 2015).
The photobiont that is most abundant in the lichen is
referred to by authors as the ‘predominant’ (Vancurova et al.
2018, 2020; Onut-Briannstrom et al. 2018) or ‘primary’ pho-
tobiont (Voytsekhovich and Beck 2016; Molins et al. 2018b;
Chiva et al. 2023), or when its abundance exceeds 90%, it
may be sometimes described as ‘dominant’ (Dal Grande
et al. 2018; Smith et al. 2020). In addition, other species of
photobionts may also be present in the thallus, which may
not even have any evident significance for the lichen and
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may only serve as a source of photobionts for other lichens
in the locality (Vancurovi et al. 2020). These photobionts
are referred to as ‘additional’, ‘accessory’ (Voytsekhovich
et al. 2011; Voytsekhovich and Beck 2016) or ‘secondary’
(Schmull et al. 2011; Paul et al. 2018). However, the latter
term is misleading in this context since it should mainly be
used to describe cyanobionts in tripartite lichens. Therefore,
it is advisable to avoid the terms ‘primary’ and ‘secondary’
photobiont in the context of photobiont plurality (Voytsek-
hovich and Beck 2016) and instead use the terms ‘predomi-
nant’ or ‘main’ photobiont to refer to the most abundant one
and ‘additional’ or ‘accessory’ when mentioning the minor-
ity photobionts. Tripartite lichens represent about 3—4% of
all lichen species (Henskens et al. 2012; Cornejo and Schei-
degger 2013). The plurality of secondary cyanobacterial
photobionts in cephalodia has been reported in a few studies
(e.g. Myllys et al. 2007; Prieto et al. 2023); however, they
will not be reviewed in detail here.

The possibility of the coexistence of multiple algae within
a thallus was mentioned as early as in 1967 (Ahmadjian
1967), where both described photobionts of the lichen
Staurothele catalepta (currently known as Verrucaria
aethiobola) were cultivated. In the last century, at least four
other studies mentioning this phenomenon appeared (Ott
1987a; Friedl 1987; Bhattacharya et al. 1996; Aoki et al.
1998). In the first decade of the 21st century, several studies
that detected photobiont plurality in analysed thalli as a sec-
ondary outcome of their focus were published. The authors
of these papers attempted to comment at least partially on
the coexistence of photobionts within a thallus (Helms et al.
2001; Romeike et al. 2002; Piercey-Normore 2006; Ohmura
et al. 2006; Guzow-Krzeminska 2006; Backor et al. 2010).
It was not until 2010 that Del Campo et al. published the

first study specifically focusing on the topic of photobiont
plurality in the thallus. In this work, the authors addressed
the diversity of photobionts within the thallus of the spe-
cies Ramalina farinacea, using both the Sanger sequenc-
ing method (Sanger et al. 1977) and transmission electron
microscopy (TEM) of the ultrastructure of photobiont pyr-
enoids. The coexistence of two different algae of the genus
Trebouxia, T. jamesii and T. lynnae, designated at that time
as TR1 and TR9 (Del Campo et al. 2010; Moya et al. 2017,
2024; Barreno et al. 2022), was subsequently confirmed in
multiple studies by molecular and morphological analyses.
The work of Del Campo et al. (2010) was just the first step
in the research on this phenomenon. In the following years,
photobiont plurality was revealed also in other lichen spe-
cies. Initially, however, most studies were conducted on
thalli of the species R. farinacea, which was taken as a ref-
erence model to enhance the methods used and compare the
physiology of the two recorded algal species. In the work of
Moya et al. (2017), the authors used the 454-pyrosequenc-
ing method to reveal the overall diversity of photobionts
in the thallus of this lichen. They discovered more than 30
photobiont taxa, which is the largest recorded diversity of
photobionts within a single lichen thallus to date. However,
the authors note that some of the sequences may have been
obtained due to contamination by epiphytic algae (Moya
et al. 2017).

Photobiont plurality has been discovered in several dif-
ferent lichen genera to date (Fig. 1). The majority belongs to
the phylum Ascomycota, class Lecanoromycetes. Most stud-
ies have focused on lichen species of the genus Ramalina
(Del Campo et al. 2010; Campo et al. 2013; Casano et al.
2011, 2015; Del Hoyo et al. 2011; Alvarez et al. 2012, 2015;
Catal4 et al. 2016; Voytsekhovich and Beck 2016; Moya

Fig. 1 Examples of lichens where photobiont plurality was reported. a Tephromela atra, b Umbilicaria pustulata, ¢ Rhizoplaca melanophthalma,
d Cladonia macilenta, e Ramalina farinacea. (Photos: J. Mali¢ek — b; L. Muggia — a, c, e; J. Steinova — d)
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et al. 2017, 2024; Molins et al. 2021; Blazquez et al. 2022;
Chiva et al. 2023), mostly the species R. farinacea. The sec-
ond and third most studied groups are lichens belonging
to the families Cladoniaceae — Cladonia borealis, C. cari-
osa, C. gracilis, C. humilis, C. macilenta, C. pyxidata, C.
rei, C. squamosa, C. subturgida, C. subulata (Backor et al.
2010; Park et al. 2015; Noh et al. 2020; Osyczka et al. 2021;
Pino-Bodas et al. 2023) and Umbilicariaceae — Umbilicaria
antarctica, U. decussata, U. hispanica, U. phaea and U. pus-
tulata (Romeike et al. 2002; Park et al. 2015; Dal Grande
et al. 2018; Paul et al. 2018; Rolshausen et al. 2020).

Furthermore, photobiont plurality has been recorded in
the lichen families Lecanoraceae (Guzow-Krzemirnska 20006;
Muggia et al. 2013b; De Carolis et al. 2022), Megaspo-
raceae (Voytsekhovich and Beck 2016; Molins et al. 2018a,
b), Parmeliaceae (Piercey-Normore 2006; Ohmura et al.
2006, 2019; Mansournia et al. 2012; Molins et al. 2013;
Onut-Bréannstrom et al. 2018; Meyer et al. 2023; Chiva et al.
2023), Physciaceae (Helms et al. 2001; Dal Grande et al.
2014), Tephromelataceae (Muggia et al. 2014; De Carolis
et al. 2022) and several others.

Within the phylum Ascomycota, several photobionts
from a single thallus have also been described among the
classes Lichinomycetes (Voytsekhovich and Beck 2016;
Chrismas et al. 2021) and Eurotiomycetes (Voytsekhovich
and Beck 2016). Regarding lichens of the phylum Basidi-
omycota, photobiont plurality was recorded in most genera
of the family Hygrophoraceae, in particular, in the species
Lichenomphalia meridionalis (Gasulla et al. 2020), and
representatives of the genera Acantholichen, Cora, Corella
and Dictyonema (Dal Forno et al. 2021). For more detailed
information, refer to Table 1.

Photobiont plurality of the genus Trebouxia has also been
described in the parasitic species Diploschistes muscorum
(Friedl 1987; Wedin et al. 2016; Osyczka et al. 2021). The
hyphae of the mycobiont first ‘steal’ Asterochloris algae from a
Cladonia lichen to form the thallus and subsequently exchange
it for a Trebouxia photobiont, which seems to be preferred for
long-term symbiosis (Friedl 1987; Wedin et al. 2016).

4 Methods applied to study photobiont
plurality

At first, efforts were made to demonstrate the phenomenon
of photobiont plurality using several methods simulta-
neously (Table 1). These methods primarily consisted of
molecular techniques and microscopic analysis. The most
common photobionts entering this symbiosis are representa-
tives of the genus Trebouxia (Nash 2008), with some species
of this genus differing in the morphology of pyrenoids or
even entire chloroplasts (e.g. Del Campo et al. 2010, 2013;
Casano et al. 2011; Bordenave et al. 2022). For this reason,

both transmission electron microscopy (TEM; Del Campo
et al. 2010; Campo et al. 2013; Casano et al. 2011; Molins
et al. 2013, 2018a, b) and light microscopy (LM; Friedl
1987; Casano et al. 2011; Voytsekhovich et al. 2011; Mug-
gia et al. 2014; Catala et al. 2016; Voytsekhovich and Beck
2016) played a significant role in confirming the plurality of
photobionts within the thallus (Fig. 2). In the initial study
focusing purely on the phenomenon of plurality, microscopic
techniques were even more crucial, since by using Sanger
sequencing of the ITS region of nuclear rDNA only one
of the two observed photobionts was detected (Del Campo
et al. 2010).

From the early stages of photobiont plurality research,
molecular methods have gained significance (e.g. Park et al.
2015; Chrismas et al. 2021). Originally, authors applied
Sanger sequencing as it was the most common sequencing
method at the time (Del Campo et al. 2010; Campo et al.
2013; Casano et al. 2011). However, this method can only
accurately detect the predominant photobiont, whose DNA
is most abundantly represented after amplification. Sanger
sequencing can yield high-quality results only if the pho-
tobiont with minor abundance constitutes a maximum of
30% of the thallus photobionts. If the proportion of the addi-
tional photobiont in the thallus is higher, readable sequenc-
ing data cannot be obtained (Paul et al. 2018; Moya et al.
2021). Thus, sequencing has often failed in thalli that were
confirmed, e.g. morphologically, to contain several photobi-
onts (Voytsekhovich and Beck 2016). In 2015, the first study
was published in which information on photobiont plurality
was obtained by using next-generation sequencing (NGS,
HTS), specifically DNA metabarcoding (Park et al. 2015).
Subsequent studies routinely employed this technique (e.g.
Onut-Brinnstrom et al. 2018; Paul et al. 2018; Vancurova
et al. 2020; Molins et al. 2021), and the results were often
no longer supplemented with microscopic observations.
Among the most used NGS platforms are Illumina (Fig. 2;
Vancurova et al. 2020; Smith et al. 2020; Chrismas et al.
2021, 2024; Molins et al. 2021; Moya et al. 2021, 2024;
Blazquez et al. 2022; Meyer et al. 2023; Pino-Bodas et al.
2023), Ion Torrent (Onut-Brannstrom et al. 2018), and the
now less commonly used 454 pyrosequencing method (e.g.
Park et al. 2015; Moya et al. 2017; Molins et al. 2018a, b;
Noh et al. 2020; Dal Forno et al. 2021). In some studies,
metabarcoding was used to sequence particularly those sam-
ples for which authors were not able to obtain reliable data
using Sanger sequencing (Muggia et al. 2014; Vanéurova
et al. 2020), and they understood this situation as a pos-
sibility of multiple algal sequences being present (Ohmura
et al. 2006). Photobiont plurality in these samples was sub-
sequently confirmed by metabarcoding. This method is also
suitable for detecting the coexistence of photobiont species
that cannot be distinguished microscopically (Moya et al.
2017; Dal Forno et al. 2021).
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W Symbiochloris handae
W Trebouxiasp.

W Coccomyxaantarctica
M Trentepohliaceaesp. 1

Trentepohliaceae sp. 2

Apatococcus sp. 1
Coccomyxa sp.
Trentepohliaceaesp.3

B Other

Fig.2 Photobiont plurality proven in a thallus of Biatora globulosa.
a, b, d LM pictures — Trentepohliaceae species (T, orange), coccoid
green algae (CGA, green). ¢ Proportion of photobionts detected in

The most sequenced region was the internal transcribed
spacer (ITS) in nuclear rDNA (e.g. Piercey-Normore 2006;
Guzow-Krzemiriska 2006; Del Campo et al. 2013; Dal
Grande et al. 2018; Gasulla et al. 2020; De Carolis et al.
2022). Otherwise, sequencing of chloroplast DNA, i.e. of
the rbcL marker, was performed (e.g. Del Campo et al. 2010;
Casano et al. 2011; Molins et al. 2013; Ruprecht et al. 2014;
Catal4 et al. 2016; Ohmura et al. 2019). The chloroplast
genome is more conservative and may be more suitable for
distinguishing between individual algal species in some
algal groups such as Trebouxia species (Del Campo et al.
2010; Casano et al. 2011).

Besides the conventional sequencing methods, finger-
printing methods have also been applied to detect photobiont
plurality (Table 1). Fingerprinting techniques allow to distin-
guish between photobionts of different genotypes/haplotypes
of the same species (Piercey-Normore 2006; Muggia et al.
2013b; Nyati et al. 2013; Ohmura et al. 2019). By comparing
the obtained sequences, photobiont plurality was revealed,
for example, in the thalli of the lichen Evernia mesomorpha
using the restriction fragment length polymorphism (RFLP)
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the thallus by Illumina metabarcoding. For detailed methodology of
LM and Illumina metabarcoding applied, see Supplementary material
S1

based on the different lengths of fragments from different
genotypes (Piercey-Normore 2006). The denaturing gradient
gel electrophoresis (DGGE) method separates equally long
DNA fragments after PCR amplification based on the dif-
ferences in their sequences after denaturation (Schéfer and
Muyzer 2001). Ohmura et al. (2019) applied this method
to study photobiont plurality in the species Parmotrema
tinctorum on the chloroplast gene rbcL. Single-strand con-
formation polymorphism (SSCP) separates different frag-
ments of genetic information based on differences in the
conformation of single-strand DNA (Dong and Zhu 2005).
This method also confirmed the coexistence of algae in the
thalli of lichens Protoparmeliopsis muralis and Tephromela
atra (Muggia et al. 2013b, 2014). Lastly, the authors of the
study by Nyati et al. (2013) used the randomly amplified
polymorphic DNA (RAPD), a method based on the random
PCR amplification of DNA segments (Nyati et al. 2013).

A crucial condition for the successful determination of
the photobiont diversity in a thallus is the selection of prim-
ers, which are essential for amplifying the DNA of the pre-
sent photobiont(s). In some cases, this has led to the need
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to design specific primers targeting specific groups of pho-
tobionts (Del Campo et al. 2010; Casano et al. 2011; Moya
et al. 2017), as existing primers might not be most suitable
to reflect the true diversity in the thallus. Universal primers
typically amplify the predominant photobiont, while spe-
cifically designed primers are applied for detecting minor
photobionts (Piercey-Normore 2006; Del Campo et al. 2013;
Alvarez et al. 2015; Molins et al. 2020).

The phenomenon of photobiont plurality was probably
overlooked in the past for several reasons. Part of this was
due to misinterpretation of the ambiguous signal obtained
by Sanger sequencing. Such signals were considered meth-
odological errors. Thus, sequences with these double peaks
on the electropherogram were typically excluded from the
results (Leavitt et al. 2015). However, current knowledge
suggests that the problem with sequencing photobionts using
the Sanger method, on the contrary, often indicates the pres-
ence of multiple photobionts in the thallus (Vancurova et al.
2020). On the other hand, it should be noted that due to the
high success rate of sequencing photobionts directly from
the thallus using this method, most lichens probably contain
only one predominant photobiont (Paul et al. 2018; Blazquez
et al. 2022). Therefore, it seems that the final identification
of the number of photobionts in the thallus significantly
depends on the method used, the accuracy and precision
with which it was performed, and even on the part of the
thallus authors used for the analysis (Molins et al. 2018a).

As mentioned above, different species or lineages of
photobionts often cannot be distinguished from one another
using microscopy techniques alone (Kroken and Taylor
2000; Helms et al. 2001; Del Campo et al. 2013; Catala et al.
2016), and it is a common practice in recent years to follow
an integrative approach for species determination. However,
in some cases within the genera Trebouxia and Asterochloris,
different algae may be morphologically determined based on
the visualisation of the entire three-dimensional chloroplast
morphology using confocal microscopy (CLSM; Skaloud
and Peksa 2008; Bordenave et al. 2022), pyrenoid ultrastruc-
ture using TEM (e.g. Casano et al. 2011; Del Campo et al.
2013; Bordenave et al. 2022), cultivation and subsequent
light microscopy of all stages of their life cycle (Kroken
and Taylor 2000), visualisation of cell wall thickness using
scanning electron microscopy (SEM; Casano et al. 2011,
2015; Muggia et al. 2011; Alvarez et al. 2012), or cell size
itself (Casano et al. 2011).

It is important to keep in mind that many discrepancies in
the study of photobionts (e.g. failure to capture sequences of
all photobionts or detection of algae/cyanobacteria that are
not photobionts of the thallus) may be due to methodologi-
cal errors. In addition to the previously mentioned limits of
Sanger sequencing, results may be influenced by errors in
the steps prior to the sequencing process itself. For example,
during PCR amplification of DNA extracted directly from

the thallus, DNA of epiphytic algae which are not part of
the holobiont (Guzow-Krzeminska 2006; Thiis et al. 2011;
Moya et al. 2017; Skaloud et al. 2018), or DNA of photo-
bionts from other lichens occurring in the same area as the
studied species may be amplified causing a bias in the results
(Helms et al. 2001). To some extent, these contaminations
can be prevented by washing the thallus (Mansournia et al.
2012; Moya et al. 2017; Dal Grande et al. 2018; Chrismas
et al. 2021); however, even with thorough washing, some
epiphytic algae may remain trapped on the thallus in cavities
or cracks (Thiis et al. 2011). In the study by Chrismas et al.
(2021) on Lichina pygmaea, the extrathalline community
extracted from the wash water filters was also analysed to
distinguish contaminations from photobionts.

Direct isolation of photobionts from the algal layer and
cultivation may also reduce or even avoid contamination
by epithalline algae. Once the individual photobionts are
grown in cultures, they are identified morphologically and
by sequencing. However, contaminations may occur even in
this case, when accidentally cultivating non-lichenized algae
if their association with the mycobiont hyphae is not micro-
scopically verified before cultivation (Thiis et al. 2011).
Another bias could be caused by using overly specific prim-
ers that do not comprehensively capture the diversity of pho-
tobionts in the thallus (Jadrna 2017). For instance, this hap-
pened when primers specific to the algal genera Trebouxia
and Asterochloris were used for Sanger sequencing when
investigating the photobiont diversity of the species Psora
decipiens (Ruprecht et al. 2014). This mycobiont generally
associates with the phycobiont genus Myrmecia (Williams
et al. 2017; Jadrna 2017), but due to the wrong primer choice
it was not captured in the results.

5 The origins of photobiont plurality

There are several hypotheses regarding the origin of pho-
tobiont plurality in lichen thalli. In the case of sexually
reproducing lichens, a so-called horizontal transmission of
photobionts usually occurs (see, for instance, Dal Grande
et al. 2018). The germinating fungal spore may associ-
ate with several photobionts present in the surrounding
environment simultaneously, which is followed by the
selection of the most suitable photosynthesising partner(s)
(Bhattacharya et al. 1996; Werth and Sork 2010; Dal
Grande et al. 2014, 2018; Muggia et al. 2014). Although
horizontal transmission is usually linked to sexually
reproducing species, it may also play an important role
in asexual lichens. In this case, the mycobiont and the
predominant photobiont spread together (so-called verti-
cal transmission). Other photobionts may enter the newly
forming thallus from outside during the redifferentiation of
the vegetative propagules or thallus fragments (horizontal
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transmission; Ohmura et al. 2019). During this process,
not only hyphae from these germinating propagules may
incorporate new photobionts, but also the original photobi-
ont may be replaced by a more suitable photobiont(s) from
the surrounding environment (Ohmura et al. 2006; Moya
et al. 2024), leading to photobiont switching (Piercey-Nor-
more 2006). Multiple different photobionts may also sel-
dom coexist already in the isidia (Mansournia et al. 2012;
Molins et al. 2013). The spreading of several photobionts
together via the same vegetative propagule belongs to the
category of vertical transmission (Werth and Sork 2010).

Photobiont plurality may also arise from the incorpo-
ration of additional photobionts into the lichen thallus
during its life (horizontal transmission; Piercey-Normore
2006; Ohmura et al. 2006; Mansournia et al. 2012; Dal
Grande et al. 2014; Onut-Brannstrom et al. 2018). This
explanation is supported, for example, by cases where the
podetia (erect three-dimensional structures of the thalli
of the genus Cladonia) of two Cladonia species con-
tained multiple photobionts only in their upper part. In
the basal part, which is the oldest, the occurrence of only
one photobiont was recorded, indicating that new photo-
bionts must have entered the thallus while it was grow-
ing (Backor et al. 2010). Furthermore, it is presumed that
additional photobionts may enter the thallus during the
thallus regeneration process, for example, after herbivory
(Dal Grande et al. 2014, 2018). Another explanation is
that the photobiont plurality may arise from the fusion of
two originally distinct thalli (Friedl 1987; Ohmura et al.
2006; Nash 2008). This theory is based on a witnessed
fusion of hyphae (Ott 1987b) and soredia (Schuster et al.
1985). However, neither of these explanations has been
experimentally confirmed, and they are based only on indi-
rect observations. To precisely determine the source of
photobionts and understand the mechanism of photobiont
plurality formation, it would be necessary to analyse free-
living photobionts from thalli surrounding the thallus of
interest (Guzow-Krzeminska 2006).

Generally, it is assumed that if photobionts are not com-
monly free-living, they were most likely acquired from other
lichens growing nearby and later incorporated into the thal-
lus (Ahmadjian 1988). Alternatively, free-living algae and
cyanobacteria from the surrounding environment enter the
thallus (Mansournia et al. 2012; Voytsekhovich and Beck
2016; Chrismas et al. 2021).

The publication of Mansournia et al. (2012) suggests that
genetic variability of photobionts within the thallus can also
arise when algae reproduce sexually inside the thallus. How-
ever, in the vast majority of cases, as far as it is known, pho-
tobionts in the thallus undergo only asexual reproduction,
and cases of sexual reproduction occur very rarely and have
been observed in axenic cultures only (Mansournia et al.
2012; Skaloud et al. 2015 ; Gasquez et al. 2024). According
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to some authors, the presence of distinct haplotypes in the
thallus may also be further attributed to mutations in the
photobiont genome (Nash 2008; Dal Grande et al. 2014;
Moya et al. 2024). However, this explanation is not com-
monly used in most of the available literature.

6 Coexisting photobionts within a lichen
thallus

The co-occurrence of multiple photobionts was mostly
observed within the genera Trebouxia and Asterochloris. These
genera are prevalent among phycobionts, prompting authors to
revisit their examination (Casano et al. 2011; Ruprecht et al.
2014; Dal Grande et al. 2018). Trebouxia jamesii appears
to be the most frequently documented species among the
recorded coexisting photobionts. The classification of the
genus Trebouxia into four clades: ‘A’ (arboricolalgigantea),
‘C’ (corticolalgalapagensisiusneae), ‘I (impressalgelatinosa),
and ‘S’ (simplex/‘letharii’ [jamesii) was revised most recently
by Muggia et al. (2020). Later published studies have utilized
this classification for phylogenetic analysis, such as Molins
et al. (2021) and De Carolis et al. (2022). Most species of
the genus Trebouxia coexisting with other photobionts in
lichens are found within the clade ‘A’, followed by ‘S’ and
‘T’ (Voytsekhovich and Beck 2016; Dal Grande et al. 2018;
Molins et al. 2021; De Carolis et al. 2022).

Other photobionts that have been reported to coexist
with another photobiont include, for example, Coccomyxa,
Diplosphaera (e.g. Molins et al. 2021), Symbiochloris
(Wedin et al. 2016), and Pseudochlorella (e.g. Park
et al. 2015) (Trebouxiophyceae), as well as Blidingia,
Paulbroadia (Ulvophyceae) (Chrismas et al. 2021; Vesela
et al. 2024). Within prokaryotic organisms, this primarily
involved cyanobacteria from the genera Pleurocapsa,
Rivularia (Chrismas et al. 2021), and Rhizonema
(Dal Forno et al. 2021). To a lesser extent, the genera
Acaryochloris, Phormidesmis, and Synechocystis were
also involved (Chrismas et al. 2021). For further details,
see Table 1.

Phylogenetic analyses of photobionts within lichen
thalli do not reveal any clear trend regarding the coexist-
ence of photobionts based on their relatedness. In some
cases, closely related species were found within the thallus
(Friedl 1987; Helms et al. 2001; Guzow-Krzemiriska 2006;
Del Campo et al. 2010; Campo et al. 2013; Casano et al.
2011, 2015; Del Hoyo et al. 2011; Mansournia et al. 2012;
Alvarez et al. 2012, 2015; Muggia et al. 2013b; Catala
et al. 2016; Voytsekhovich and Beck 2016; Dal Grande
et al. 2018; Molins et al. 2018a, 2020; Onut-Brannstrom
et al. 2018; Rolshausen et al. 2020; Blazquez et al. 2022;
De Carolis et al. 2022; Meyer et al. 2023; Chiva et al.
2023; Pino-Bodas et al. 2023; Moya et al. 2024) and even
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the coexistence of different haplotypes/genotypes of algae
of the same species has also been considered photobiont
plurality (Romeike et al. 2002; Piercey-Normore 2006;
Ohmura et al. 2006, 2019; Mansournia et al. 2012; Mug-
gia et al. 2013b; Dal Grande et al. 2014; Catala et al.
2016; Jadrna 2017; Gasulla et al. 2020; Dal Forno et al.
2021; Osyczka et al. 2021; Vancurova et al. 2021). On
the other hand, algae from different genera or even fur-
ther taxonomically distant algae were observed coexisting
together within a thallus (Fig. 2; Ahmadjian 1967; Muggia
etal. 2011, 2014; Schmull et al. 2011; Molins et al. 2013,
2018b, 2021; Ruprecht et al. 2014; Park et al. 2015; Wedin
et al. 2016; Voytsekhovich and Beck 2016; Moya et al.
2017, 2021; Vancurova et al. 2018, 2020; Noh et al. 2020;
Chrismas et al. 2021; Chiva et al. 2023). Once, even the
cooccurrence of several eukaryotic and prokaryotic photo-
bionts was demonstrated (Chrismas et al. 2021).

The ratios of coexisting photobionts within individual
thalli in various studies exhibit a similar trend. The major-
ity of thalli indeed contain a single predominant photobiont,
which has a higher abundance compared to others (Mug-
gia et al. 2014; Dal Grande et al. 2018; Smith et al. 2020;
Molins et al. 2021; Moya et al. 2021; Blazquez et al. 2022;
Pino-Bodas et al. 2023). Dal Grande et al. (2018), in a study
focusing on lichens of the genus Umbilicaria (formerly
known as Lasallia), observed that for the species U. pustu-
lata the abundance of the predominant photobiont accounted
for more than 90% in 43.4% of the cases (among all samples
including those with a single photobiont). They observed
a similar pattern for U. hispanica in 11.7% of the cases.
Likewise, Blazquez et al. (2022) pointed out in the study of
several species of the Ramalina decipiens group that 94%
of the examined thalli exhibiting photobiont plurality had
indeed one dominant photobiont. On the other hand, Biatora
globulosa, presented in this work, was associated with sev-
eral photobionts of high abundance in its thallus with none
being clearly dominant (Fig. 2).

As mentioned above, the term ‘photobiont pool’ refers
to the set of all algal species present in a given environment
(Yahr et al. 2004; Guzow-Krzeminska 2006; Molins et al.
2021). It likely serves as a source of additional photobi-
onts (Voytsekhovich and Beck 2016), although, Vancurova
et al. (2020) discovered that the algal communities within
the studied Stereocaulon thalli and the soil from the sam-
pling locality were not overlapping very much. However,
it can be assumed that the availability of photobionts has
a significant impact on the selectivity of the mycobiont.
A species that appears to be highly selective may actually
have a low degree of selectivity, but compatible photobionts
may not be available in the given location (Dal Forno et al.
2021). Closely related species are usually found on various
substrates of similar type, e.g. eutrophic substrates (Guzow-
Krzeminska 2006). From this perspective, photobionts are

first selected by the environment and then by the mycobiont
(Molins et al. 2021).

The nature of the relationship between algae within the
thallus can vary. Most studies focus solely on the relation-
ship between the mycobiont and the photobiont without
considering how different algae may influence each other.
For example, some authors consider the species Trebouxia
decolorans to be a parasite partially nourished by another
alga (photobiont) living within the same lichen thallus (e.g.
Rikkinen 1995). It is also possible that only those algae
selected by the mycobiont, and with no competition between
them, may coexist within the thallus. (Piercey-Normore
2006). This hypothesis can be explained using the example
of transition zones in elevation gradients. Rolshausen et al.
(2020) defined this transition zone based on temperature and
precipitation in the warmest part of the year. Other stud-
ies have delimited it as a zone within the range of mean
altitudes. In areas of low or high altitudes, lichens with
only one photobiont adapted to local conditions are usu-
ally found. In thalli growing in the transition zone, multiple
photobionts are often present simultaneously (Dal Grande
et al. 2018; Gasulla et al. 2020; De Carolis et al. 2022). In
these zones, two photobiont pools (from lower and higher
altitudes) merge, leading to competition among photobionts
within the thalli. At lower or higher altitudes, algae adapted
to those specific conditions have a competitive advantage.
At the end of the transition zone, a less adapted photobiont
species unable to compete with the better-adapted photobi-
ont will usually be outcompeted, resulting in thalli with a
single photobiont (Rolshausen et al. 2020). Therefore, the
transition zone de facto represents an ecotone located in the
boundary area between two or more adjacent communities
and is typically characterised by a higher diversity of organ-
isms (Holland and Risser 1991).

The interaction of coexisting photobionts was also
indicated by the results published by Bhattacharya et al.
(1996). The authors suggest that horizontal transfer of
group I introns within nuclear-encoded ribosomal DNA
probably occurred in the past between two different species
of the genus Trebouxia in close physical contact within the
thallus.

7 Factors affecting photobiont plurality
in lichens

Several factors influence the diversity and abundance of
individual photobiont species within a lichen thallus. The
literature commonly mentions the genotype of the myco-
biont, geographic location, abiotic conditions in the area,
microenvironment within the thallus and reproduction mode
(e.g. Muggia et al. 2014; Molins et al. 2021). The level of
influence of each of these factors varies among lichens.
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Mycobiont - The occurrence of multiple photobionts
within the thallus is related to the degree of specificity and
selectivity of the given mycobiont. The hypothesis, assum-
ing low specificity of the mycobiont, has been supported
several times, particularly in the family Physciaceae (Helms
et al. 2001) and in species such as Evernia mesomorpha
(Piercey-Normore 2006), Protoparmeliopsis muralis
(Guzow-Krzeminska 2006), and Psora decipiens (Ruprecht
et al. 2014).

In the case of the species Ramalina farinacea, in which
photobiont plurality has been studied most extensively, a
high level of mycobiont selectivity was recorded, as the
same two lineages of the genus Trebouxia were consist-
ently present in the vast majority of thalli across different
sampling sites and studies (Del Campo et al. 2010; Campo
et al. 2013; Casano et al. 2011, 2015; Del Hoyo et al. 2011;
Alvarez et al. 2012, 2015; Moya et al. 2017; Molins et al.
2021). The degree of selectivity probably varies with thallus
age. Young thalli may contain many different photobionts
that are available in the surrounding environment. As the
thallus develops, the best-adapted photobiont for the given
location is selected and favoured as the predominant one
(Molins et al. 2021). A rather high level of selectivity is also
indicated by a study focused on the lichen Lichina pygmaea
(Chrismas et al. 2021). Chrismas et al. (2021) demonstrated
that the mycobiont also carefully selects its photosynthetic
partners, as there was a significantly higher diversity of algae
and cyanobacteria outside of the thallus compared to the
diversity within it. Lichens from the Physciaceae family,
which also exhibited photobiont plurality, showed a higher
level of selectivity as well (Helms et al. 2001). On the other
hand, Backor et al. (2010) reported that in the genus Cla-
donia, two different photobionts per thallus were detected
in four out of seventeen studied species. These four spe-
cies were identified as having low selectivity (Backor et al.
2010). Low selectivity was further documented in Ramalina
fraxinea (Catala et al. 2016), Stereocaulon vesuvianum sensu
lato (s.1.; Vancurova et al. 2018), lichens of the genus Umbil-
icaria growing in Antarctica (Romeike et al. 2002), and in
studies mainly focusing on crustose lichens (Voytsekhovich
et al. 2011; Voytsekhovich and Beck 2016). Crustose lichens
are generally assumed to exhibit lower selectivity (Helms
et al. 2001) than foliose or fruticose ones. It is also possible
that selectivity varies not only with the age of the thallus
but also depending on the geographic region. According to
Ohmura et al. (2006), in areas with less favourable condi-
tions, the mycobiont must choose a suitable photobiont more
thoroughly, resulting in higher selectivity.

In the thalli of some lichens, the presence of a par-
ticular species as the predominant alga often depends on
the specific phylogenetic lineage of the mycobiont (Dal
Grande et al. 2018; Rolshausen et al. 2020; Vancurova
et al. 2020). In contrast, species of algae found in these
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thalli in minority overlap across different mycobiont line-
ages growing in the same locality (Rolshausen et al. 2020;
Vancurova et al. 2020). However, this trend cannot be gen-
eralised to other genera of mycobionts, as, for example, the
lichen Circinaria hispida contained four different species
of the genus Trebouxia as the predominant photobionts
in its thalli (Molins et al. 2018b). In the same study, the
authors examined three additional species of the genus
Circinaria, of which two species collected from the same
locality shared the same photobionts, but no locality effect
was demonstrated when two different species were com-
pared. Similarly, differences between photobionts within
a single lichen species were only recorded in some cases.
Thus, there seems to be no universally applicable model
describing which factors are most crucial for the selec-
tion of photobionts into lichen thalli. Most likely, it differs
among individual lichen species (Molins et al. 2018Db).

In some lichens, the degree of selectivity can vary
depending on the specific haplotype of the mycobiont
and thus can be variable even within a species (Muggia
et al. 2014; Molins et al. 2021). At the same time, myco-
biont haplotypes vary geographically, meaning that even
an apparent correlation between locality and the presence
or abundance of photobiont in the thallus may, in fact,
be determined by the identity of the mycobiont (Molins
et al. 2021).

The dependence of the photobiont on the mycobiont has
been studied, for example, using transplantation experi-
ments, where it was observed that the original algal com-
position of the thallus was preserved even after transplanta-
tion (Williams et al. 2017). Regarding plurality, differences
have been noted particularly among the predominant algae
of different lichen species collected in the same localities.
Predominant photobionts were usually unique to only one
of the examined lichen species. On the other hand, within
the same lichen species, predominant photobionts varied
between different sites. Thus, the influence of the mycobiont
appears to be crucial for the occurrence of photobionts in the
thalli of different lichen species, while environmental fac-
tors primarily influence the selection of photobionts by these
same mycobionts in different localities (Park et al. 2015; Dal
Grande et al. 2018; Molins et al. 2018b).

Geography - Photobiont plurality has so far been
discovered in lichens with two distinct distribution patterns.
Either, in lichens that are cosmopolitan, such as Ramalina
farinacea (Casano et al. 2011, 2015; Moya et al. 2017),
Stereocaulon alpinum, S. vesuvianum (VanCurova et al.
2018), Tephromela atra (Muggia et al. 2014; De Carolis et al.
2022), Psora decipiens (Ruprecht et al. 2014; Jadrna 2017),
Protoparmeliopsis muralis (Guzow-Krzemiriska 2006;
Muggia et al. 2013b), Rhizoplaca melanophthalma (De Carolis
et al. 2022), or in lichens growing in areas with extreme
conditions, such as Amandinea coniops, Cladonia borealis
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(Park et al. 2015), or Lichina pygmaea (Chrismas et al. 2021).
However, for the species Protoparmeliopsis muralis and
Ramalina farinacea no clear correlation was found between
the geographic region of sampling and the algal species present
in the thallus (Guzow-Krzemirniska 2006; Casano et al. 2011;
Del Hoyo et al. 2011; Muggia et al. 2013b; Catala et al. 2016).

Lichens collected at different localities are likely to
differ not in the species composition of photobionts, but
rather in the abundance of individual lineages within
the thallus (Del Campo et al. 2010; Molins et al. 2021).
Molins et al. (2021) conducted several consecutive studies
on lichens collected from two distinct geographic locations
— the Iberian Peninsula and the Canary Islands (Molins
et al. 2013, 2018a, b, 2020, 2021). In their 2021 study, they
compared the photobiont plurality in the species Ramalina
farinacea at both locations using Illumina metabarcoding.
While the thalli from the Canary Islands were dominated
by an OTU designated Trebouxia lynnae (Barreno et al.
2022; formerly identified as Trebouxia TR9), in thalli from
the Iberian Peninsula Trebouxia jamesii was dominant
(Del Campo et al. 2010; Campo et al. 2013; Molins et al.
2021; Moya et al. 2024). No difference in the abundance of
the predominant algae was observed among the individual
islands of the Canary Islands. Similarly, Moya et al. (2024)
studied the distribution of the same two main photobiont
species of R. farinacea — T. jamesii and T. lynnae — and
indeed found that their predominance and occurrence in
the thalli correlates with their geographical distribution as
the temperature and precipitation values differ.

Environment - The occurrence of photobionts in the
environment is determined by local conditions and sub-
strate rather than by geographic area (Romeike et al. 2002;
Guzow-Krzemiriska 2006; Del Hoyo et al. 2011; Catala
et al. 2016; Gasulla et al. 2020). It is assumed that differ-
ent species of photobionts vary in sensitivity to substrate
changes, meaning that less specialised algae occur in vari-
ous habitats in different lichens, e.g. Trebouxia jamesii
(Voytsekhovich and Beck 2016; Moya et al. 2017). Con-
versely, species with narrow ecological amplitudes will
associate with selected mycobionts only in places with
optimal conditions (Voytsekhovich et al. 2011; Park et al.
2015; Voytsekhovich and Beck 2016).

Vegetatively reproducing Umbilicaria pustulata and sex-
ually reproducing U. hispanica are two closely related spe-
cies with very distinct ecological requirements (Dal Grande
et al. 2018). Comparing them has enabled the assessment
of the influence of ecological conditions. The results indi-
cate that these species have ecological optima in different
ecological niches, and they engage in photobiont sharing in
areas of overlap. Proportionally, photobiont plurality was
recorded much more frequently in U. pustulata (64.1% of
all samples) than in U. hispanica (28.4%), suggesting that
despite their close genetic relation, they differ in their degree

of selectivity and optimal ecological conditions of the envi-
ronment. In contrast, the overall diversity of associated algae
was higher in U. hispanica, which is attributed to its mode of
reproduction (Dal Grande et al. 2018). Reproductive mode
probably influences the specificity rather than the selectivity
of the mycobiont.

When considering environmental influences, anthro-
pogenic impacts must also be considered. Within a single
thallus of the lichen Parmotrema tinctorum, Ohmura et al.
(2006) found a smaller number of haplotypes of the photo-
biont Trebouxia corticola in specimens collected in urban
areas compared to those sampled outside. The authors
attribute this finding either again to different selectivity of
the mycobiont, or to the bottleneck effect or founder effect,
which assume a reduction in algal diversity due to poor air
quality (Ohmura et al. 2006). In contrast, other publica-
tions describe a higher frequency of photobiont plurality
in lichens growing in eutrophic or polluted areas, which is
explained as a survival strategy in inhospitable or even toxic
conditions (Guzow-Krzeminska 2006; Backor et al. 2010;
Muggia et al. 2013b; Osyczka et al. 2021).

Thallus parts and reproduction mode of the mycobiont
- Another yet insufficiently answered question is the extent to
which the frequency of photobiont plurality varies depending
on the part of the analysed thallus. Existing results do not
provide a clear answer. For example, Molins et al. (2021)
did not find significant differences in photobiont plurality
abundance between the apical, middle, and basal parts of
the thallus branches of Ramalina farinacea. On the other
hand, Moya et al. (2017) and Noh et al. (2020) observed
significant differences between different parts of the thallus
of R. farinacea and Cladonia squamosa, respectively. In
both studies, a higher diversity of photobionts was found
in its basal part, which is attributed to higher, and above all
more stable, humidity and temperature conditions, which
create a more favourable environment for the microalgae.
Conversely, the apical part is more exposed to sunlight,
higher desiccation, and mechanical stresses (e.g. breakage),
which are conditions where fewer species of algae can
survive (Moya et al. 2017; Noh et al. 2020). This process,
where photobionts are exchanged within the thallus as the
conditions change, may be seen as a succession within the
lichen thallus ecosystem. In this context, photobiont species
at the margins of the thallus may be considered pioneer
communities (Moya et al. 2017). This trend was observed
in fruticose lichens, where temperature and humidity
conditions can differ at small spatial scales in the apical and
basal parts of the thallus, similarly as in distinct regions
of macroecosystems on a larger scale (Moya et al. 2017).
Another explanation arises from the influence of the age of
the thallus. R. farinacea exhibits higher photobiont diversity
in smaller and younger thalli than in older, larger thalli
collected from the same trees/branches (Molins et al. 2021).
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The importance of the particular part of the thallus
being analysed has also been demonstrated in the case of
Parmotrema tinctorum, where different parts of the thal-
lus contained a single photobiont, which in some cases was
different from the photobionts in other parts of the same
thallus (Mansournia et al. 2012). High photobiont diversity
in the thallus of the species Ramalina farinacea might also
have been discovered due to the systematic investigation of
several parts of each thallus (Moya et al. 2017), unlike in
previous studies of the same lichen (e.g. Del Campo et al.
2010, 2013; Casano et al. 2011).

Muggia et al. (2014) presented yet another alternative
explanation for why there might be higher photobiont diver-
sity in the older parts of the thallus, using the example of
the lichen Tephromela atra. This crustose lichen reproduces
sexually, which means that it relies on germinating spores
to find a suitable photosynthetic partner to form a thallus.
In such a case, it may associate with several photobiont spe-
cies, from which it selects the most suitable one during its
development, which then becomes the most abundant in the
thallus. The remaining photobionts are retained in the thal-
lus only as remnants of thallus formation and as a reserve in
case environmental conditions change (Muggia et al. 2014).

8 Significance of photobiont plurality
for the lichen symbiosis

A fundamental question regarding photobiont plurality is
‘Why do some lichens have multiple photobionts?’ Several
hypotheses are available in the scientific literature. The strat-
egy of lichens to accumulate multiple photosynthetic part-
ners within their thalli was hypothesized to be advantageous
in overcoming adverse environmental conditions (Romeike
et al. 2002; Casano et al. 2011, 2015; Molins et al. 2013;
Moya et al. 2017). For instance, this may be the case for the
species Evernia mesomorpha, which survives in polluted
areas (Gunn et al. 1995). Photobionts of the lichen Ramalina
farinacea (Trebouxia jamesii and T. lynnae) have been tested
and compared for their different responses to stressful con-
ditions (Del Hoyo et al. 2011; Alvarez et al. 2012; Casano
et al. 2015). Furthermore, whether these photobionts were
tested for resistance to stress caused by heavy metals (Alva-
rez et al. 2012, 2015; Casano et al. 2015), oxidative stress
(Del Hoyo et al. 2011; Alvarez et al. 2015), or the effects of
temperature and irradiance (Casano et al. 2011; Del Campo
et al. 2013), the conclusion was always that each of the two
species responded differently to stress, thereby offering the
lichen symbiosis two different ways to cope with unfavour-
able conditions.

In the case of heavy metals, the T. jamesii used intracellular
mechanisms as a defence against stress, while the 7. lynnae
algae relied primarily on a more extensive extracellular
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apparatus and an approximately three times thicker cell
wall (Alvarez et al. 2012; Casano et al. 2015). The thicker
cell wall seems to compensate for its relatively easier lysis
(compared to the cell wall of T. jamesii). During oxidative
stress, 7. lynnae better preserves essential components of
the photosynthetic apparatus, but 7. jamesii has a faster
response to the stress (Del Hoyo et al. 2011). In terms of
the thermostability of RNA secondary structure, 7. lynnae
is again more resistant (Del Campo et al. 2013). Overall, T.
lynnae is a partner with generally higher tolerance to stress
factors; thus, it is found as the predominant photobiont in
warm areas exposed to sunlight. Alternatively, 7. jamesii
is more abundant in thalli exposed to lower temperatures
and lower irradiance (Del Hoyo et al. 2011). The overall
response to a given stress factor is mostly determined by the
predominant photobiont (Alvarez et al. 2015); however, it
is assumed that algal species coexisting in one thallus have
physiological properties that complement each other at least
partially, thereby enhancing the fitness of the whole lichen
(Casano et al. 2011, 2015; Del Hoyo et al. 2011; Del Campo
et al. 2013). However, it is important to note that all of these
studies were conducted only on a single lichen species, so it is
still not possible to draw any generally applicable conclusions
from their results.

The advantage of a thallus with multiple photobionts
may also lie in its ability to survive in frequently changing
conditions. For example, the coastal lichen Lichina pygmaea,
in addition to algae from the Ulvophyceae family, has both
marine cyanobacteria for survival after seawater coverage
due to tidal cycles and freshwater cyanobacteria for periods
when the thallus may be exposed to rain. This allows it to
maintain photosynthetic activity both in water and in dry
conditions (Chrismas et al. 2021). Chrismas et al. further
studied this phenomenon and, in 2023, published results
that clearly prove this statement. The two most abundant
L. pygmaea photobionts, Rivularia and Pleurocapsa, indeed
alternate in dominance in photosynthesis according to the
tidal conditions. Rivularia dominates in high tide periods,
Pleurocapsa in dry low tide. Furthermore, they complement
each other in terms of different sugar and sugar alcohol
production (Chrismas et al. 2024).

Vancurovi et al. (2020) found photobiont plurality in
lichens of the genus Stereocaulon in unstable environments
along mountain rivers. This is also related to the lichens’
attempt to expand their ecological niche. It seems that pho-
tobiont plurality occurs in ecologically less demanding
species, which, due to the coexistence of photobionts, can
expand their tolerance to environmental changes (Rupre-
cht et al. 2014; Muggia et al. 2014; Molins et al. 2020;
Prieto et al. 2023) and/or colonise new habitats (Guzow-
Krzeminska 2006; Vancurova et al. 2018). It is assumed
that this ability may bring advantages to lichens in adapt-
ing to global climate change in the future (Rolshausen et al.
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2020). Meyer et al. (2023) investigated the algal community
shifts in the lichen Evernia mesomorpha and discovered
that with increasing temperature, abundances of individual
Trebouxia species present in the thallus change. Trebouxia
of the clade S dominated the thallus at lower temperatures,
but thalli growing under warmer temperatures exhibited a
bigger proportion of Trebouxia of the clade 1. The authors,
however, also discuss whether this observed phenomenon
was partly due to seasonal change in the algal communities
since sampling was performed twice, six months apart. Pro-
toparmeliopsis muralis, due to its low selectivity and abil-
ity to harbour multiple photobionts in the thallus, is one of
the most successful colonisers of anthropogenic, eutrophic
and disturbed substrates (Guzow-Krzemiriska 2006). A clear
correlation was found in a study focusing on polluted envi-
ronments between the degree of pollution and the number
of thalli exhibiting photobiont plurality. Therefore, it can be
assumed that in polluted environments, lichens with multiple
photobionts survive better (Osyczka et al. 2021).

The effort to maximise photosynthetic efficiency may
also play a role (Piercey-Normore 2006; Casano et al. 2011;
Molins et al. 2020; Chrismas et al. 2024). For example, the
photobionts of the lichen Buellia zoharyi differ in the inten-
sity of photosynthesis in environments with different tem-
peratures (Molins et al. 2020). Epiphytic lichens growing in
tree canopies may have an ecological advantage when con-
taining multiple photobionts, since they may manage more
efficiently with varying light intensities passing through the
canopy (Piercey-Normore 2006; Casano et al. 2011).

On the contrary, Blazquez et al. (2022) argue about the
real significance of the additional photobionts for the thallus,
since in their study of Ramalina decipiens species-group
they found that a vast majority of the thalli with multiple
photobionts had one algae that was clearly more abundant
than the others.

9 Conclusions and outlooks

Photobiont plurality has been observed in lichens of different
families, including both ascomycetes and basidiomycetes,
diverse growth forms, and originating from a wide range of
substrates and habitats. Here we have reviewed the occur-
rence of multiple photobionts within single thalli in 62 stud-
ies, four fungal classes, 15 orders, 26 families, 46 genera,
and at least 100 species (Fig. 3). Both cyanobacteria and
green algae, including representatives from the Trebouxi-
ophyceae and Ulvophyceae classes, are found to coexist
within the thallus. Across the cited studies, six genera of
cyanobacteria and 20 genera of algae were described as par-
ticipating in the phenomenon of photobiont plurality within
the lichen thallus (Table 1). Photobionts found within the
same thallus can be closely related (at the level of haplotypes

m Number of

50 )
species
Number of

40 studies

30

20

10

: []

Crustose Foliose Fruticose Other

Thallus type

Fig.3 Summary of Table | representing the number of lichen spe-
cies (green) which proved to have multiple photobionts and number
of studies (orange) which described this phenomenon, according to
the thallus growth form

within the same lineage) or phylogenetically distant (at the
level of genera or even families). It is generally believed
that the greatest influence on the occurrence of photobiont
plurality in the thallus is the available photobiont pool in
the environment, itself influenced by the prevailing biotic
and abiotic conditions, as well as the degree of specificity
and selectivity of the mycobiont (e.g. Park et al. 2015; Dal
Grande et al. 2018; Molins et al. 2018b, 2021; De Carolis
et al. 2022; Meyer et al. 2023).

Photobiont plurality is likely a relatively common
phenomenon in lichen thalli; however, the number of
lichen species in which the phenomenon was studied so far
is limited, which makes interpretation of the data and its
generalisation still difficult. To deepen our understanding
of this phenomenon, further studies on a larger number of
lichen species with different characteristics (thallus types,
modes of reproduction, localities, environmental conditions,
etc.) are needed. Most of the available literature focuses on
the plurality of chlorobionts, partly due to the choice of
primers for amplifying only eukaryotic DNA. Most studies
have focused only on one or a small number of lichen species
(e.g. Noh et al. 2020; Chrismas et al. 2021), while only a few
broadly focused studies are available (e.g. Voytsekhovich
et al. 2011; Voytsekhovich and Beck 2016).

Foliose lichens have been the least explored in terms of
photobiont plurality within the thallus. Multiple photobionts
within the thallus have been most frequently observed in
crustose and fruticose lichens. Fruticose lichens have also
been studied most extensively in terms of photobiont physi-
ology and differences in the analysed parts of the thallus.

One of the greatest challenges in studying photobiont plu-
rality lies in choosing an appropriate methodology or prefer-
ably a combination of methods. In most cases, authors have
identified only two coexisting photobionts using micros-
copy or Sanger sequencing. However, these methods rarely
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USA (Utah, Colorado)

Italy, Germany

Illumina

up to 3

Trebouxia clade A
NA

fol.

X. subcumberlandia

T. decolorans (different

Dal Grande et al. 2014

Sanger (microsatelites)

fol. Trebouxia decolorans

Xanthoria parietina

haplotypes)

T. arboricola only in the

Nyati et al. 2013

France, Switzerland

Sanger, RAPD

fol. Trebouxia arboricola, T. NA

X. parietina

Swiss population

decolorans

Ott 1987a

Netherlands, Norway,

Cultivation, SEM

2

Pleurococcus sp., Pseu-

fol.

X. parietina

Sweden

dotrebouxia sp.

allow the detection of less abundant photobionts and thus to
obtain accurate data on their real diversity within the thallus.
Results may therefore be biased. In order to obtain accurate
data on the presence of multiple species in the thalli, meta-
barcoding and culture isolations from all parts of the thallus
are advisable and seem to become more and more affordable.
Also, in the future, it could be suggested to study photo-
biont plurality using advanced visualization methods, such
as fluorescence in situ hybridization (FISH). This method
was, among others, used to study bacteria in lichens (e.g.
Cardinale et al. 2008; Muggia et al. 2013a). By visualizing
individual lineages, reliable information regarding the dis-
tribution of species/haplotypes within the thallus and their
abundances could be obtained. A pitfall of this method is
the poorly permeable cell wall of photobionts for fluorescent
molecular probes. Additionally, autofluorescence of chloro-
plasts is problematic. However, this could be mitigated by
choosing fluorescent probes outside the spectrum in which
chlorophyll emits. Indeed, FISH has already been applied
to photosynthetic organisms, primarily marine algae (e.g.
Simon et al. 1995; Not et al. 2002), so protocols for lichen
photobionts could be adapted and optimized from the exist-
ing ones.

Another topic deserving attention is the study of
photobiont plurality in vegetative propagules of asexually
reproducing lichens. If we were able to sequence or
visualize photobionts in structures such as soredia,
it would contribute to a better understanding of how
multiple photobionts enter the thallus and spread. Casano
et al. (2011) already discussed the possibility that the
stability of the proportion in which Trebouxia jamesii
and T. lynnae are present in the sorediate lichen Ramalina

farinacea is not only due to the high selectivity of the

mycobiont but also to its mode of reproduction. However,
no comprehensive study focusing on the relationship
between plurality and the reproductive strategy of lichens
has been published yet.

In studies focusing on photobiont plurality, there is often
a lack of data that elucidates the physiological differences
between photobionts within the thallus. Such information
has only been obtained for the photobionts isolated from
the lichens Ramalina farinacea (Casano et al. 2011, 2015;
Del Hoyo et al. 2011; Alvarez et al. 2012, 2015), Buellia
zoharyi, and Cladonia squamosa, where differences in
tolerance to various humidity and temperature levels
within one thallus have been described (Noh et al. 2020).
Performing similar comparative experiments on other lichen
species with multiple photobionts would certainly help to
assess the significance of each coexisting photobiont for
symbiosis.

The occurrence and abundance of coexisting algae have
also been described in terms of their distribution within
the thallus (Mansournia et al. 2012; Moya et al. 2017;
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Noh et al. 2020; Molins et al. 2021). Again, however, a
vastly limited amount of data is available on this subject,
and this data is probably, on top of that, influenced by the
methodology used. Future studies could focus on whether
individual photobionts within the thallus are segregated in
different zones correspondingly to cyanobacteria and algae
in the photosymbiodemes described in tripartite lichens, or
whether they are rather intermixed within the thallus.

The results of this review suggest that the occurrence
of photobiont plurality is, in fact, much more common
than previously assumed. The number of studies focusing
primarily on the topic of photobiont plurality is still
relatively small. In most cases, photobiont plurality was
discovered as a side effect of the main topic of the research
such as the specificity and selectivity of mycobionts or
the diversity of photobionts in general (e.g. Helms et al.
2001; Romeike et al. 2002; Muggia et al. 2014). Therefore,
more studies focusing directly on the topic of multiple
photobionts in a lichen thallus are needed to gain more
comprehensive knowledge.
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